
Journal of Engineering Mathematics, Vol. 7, No. 1, January 1973 
Noordhoff International Publishing- Leyden 
Printed in The Netherlands 

On the construction of accurate difference schemes 
partial differential equations 

P. W E S S E L I N G  
National Aerospace Laboratory NLR, Amsterdam, The Netherlands ~ 

(Received January 19, 1972 and in revised form June 2, 1972) 

19 

for hyperbolic 

S U M M A R Y  
Methods are developed for increasing the fidelity of difference approximations to hyperbolic partial differential 
equations. A relation between the truncation error and the exact and approximate amplification factors is derived. 
Based upon this relation, quantitative criteria for the minimization of dissipation and dispersion are derived, and 
difference schemes which satisfy these criteria are constructed. Completely new schemes, one of them promising, are 
obtained, together with several well-known schemes. One of these is the Fromm scheme, for which previously only a 
heuristic derivation could be given. It is shown that in general the accuracy of the Rusanov-Burstein-Mirin scheme is 
disappointing. A simple modification was found to remedy this deficiency. 

1. Introduction 

Although we have come a long way towards the realization of L. F. Richardson's dream of 
accurate long term "weather forecasting by numerical process" [14], it has become increasingly 
evident, that application of the computer to the solution of complicated initial-boundary-value 
problems, such as occur in fluid mechanics, can fulfill its promise of bringing a larger class of 
problems within our reach only if the numerical methods to be employed are designed very 
carefully. The discovery of the Courant-Friedrichs-Lewy stability condition [3] eliminated one 
of the causes of failure of Richardson's pioneering calculations. But stability is only one 
of the properties which a good finite difference scheme should have. Several authors have 
pointed out, that numerical dissipation and dispersion should be kept small, and have con- 
structed difference schemes that more or less fulfill this requirement [5], [6], [7], [9], [10], [16]. 
It has also been shown that it may be advantageous to employ so-called conservative difference 
schemes, i.e. schemes which conserve some quantity that is an approximation to a quantity, 
like mass or momentum, which is conserved by the exact equations [1], [5], [6], [8], [13]. 
Finite difference methods are never completely free from dissipation and dispersion. Perhaps 
Galerkin methods, which may be made free of dispersion, are to be preferred above finite 
difference methods for many applications; see e.g. [12]. In order to obtain insight into this 
matter it is necessary to investigate to what extent dissipation and dispersion can be suppressed 
in finite difference methods, and here the present paper attempts to contribute. 

The design of difference schemes with little numerical dissipation and dispersion is hampered 
by the fact, that one does not know exactly in what way dissipation and dispersion should be 
minimized. Dissipation and dispersion must be minimized simultaneously, but it is not known 
quantitatively what weights should be attached to the dissipation and the dispersion, respecti- 
vely, in a minimization process. The aforementioned authors mainly give qualitative dis- 
cussions of the dissipation and dispersion properties of various difference schemes. In the 
following, a constructive principle, which has also been used by Miranker [10], is used in the 
design of difference schemes with little dispersion and dissipation. 

Before proceeding, it is perhaps useful to point out what is new in this paper as compared to 
[10]. As in [10], several well-known schemes are obtained, but also new ones, one of them 
perhaps being an attractive alternative to the much used Lax-Wendroff scheme. Furthermore, 
the Fromm scheme, for which until now only a heuristic derivation was available, is shown to 
follow from an application of the constructive principle just mentioned. It is shown to what 
extent and why the accuracy of the only third order predictor-corrector scheme in existence for 
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20 P. Wesseling 

hyperbolic systems, the Rusanov-Burstein-Mirin scheme [2], [17] is disappointing. The 
accuracy of this scheme is greatly improved by a simple modification, which preserves the 
predictor-corrector form. 

2, Dissipation, dispersion and truncation error 

The discussion will be limited to the following initial-value problem : 

&# __0(uq~ - o o < x < o o ,  t=>0 
0~ + gx 

(2.1) 
u = u(x), ~p (0, x) given. 

This conservation equation is a realistic model for the advection-operator in fluid mechanics, 
and has been used as such by many authors in search of accurate difference methods for fluid 
mechanical problems. Moreover, Eq. (2.1) furnishes a particularly severe test for the dissipation 
and dispersion properties of difference schemes, because dissipation and, when u is constant, 
dispersion are absent from (2.1). 

When discussing the dissipation and dispersion properties of difference schemes it seems best 
to eliminate the troublesome difficulties that are connected with the application of boundary 
conditions to partial difference equations, especially the appearance of non-harmonic normal 
modes. Therefore in (2.1) the range of x is chosen to be (-Go, Go). 

For simplicity, the number of unknowns is restricted to one, and only explicit two time-level 
difference schemes are considered. However, the reasoning which follows is more generally 
applicable, and a difference scheme with an arbitrary number of unknowns is considered later 
in this paper. 

A general expression for explicit two time-level difference schemes which approximate (2.1) is : 
k2 

~0~ +2 ~ , (2.2) = akcPj+k, 
ks 

where ~oy = ~p (n 3 t, j A x). This scheme has a difference molecule consisting of (k a - kl + 2) points, 
and will be referred to as a (k 2 - k  1 +2)-point scheme. Its solution is denoted by %(t, x). 

With u assumed constant, the amplification factor g of Eq. (2.1) is defined in the customary 
way as the ratio of the amplitude of a harmonic wave qo = a (t) exp (ivx) at time t + At and time t. 
Thus, one finds : 

g (0) = exp ( -  icO), (2.3) 

where c=uAt/Ax is the Courant number, and O=v Ax. The amplification factor gh of the 
difference scheme (2.2) is found to be : 

ha 
g/,(0) = ~ ak exp (ikO). (2.4) 

kl 

The dissipation e(0) and dispersion a(0) of a wave with wave-number O/dx are defined, 
respectively, as : 

e(0)= [gI-[ghl ,  ~(0) = arg g - a r g  gh. (2.5) 

Assume that at time t = ? q0 (~, x) possesses a Fourier-transform, and that ~0h(~, x)= ~0 (?, x). 
Denoting Fourier-transforms by the symbol ~ we have : 

1 gg(O/Ax, t)g(O) exp (iOx/Ax)dO + x) -- 

r x) = Ax ~o(O/Ax, f)g,,(O) exp(iOx/Ax)dO. 
- - o 0  

(2.6) 

(2.7) 
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Accurate difference schemes for hyperbolic partial differential equations 21 

According to Parseval's equality, the truncation error % - ~o satisfies the following equation : 

x ) }  2 = dx 
- - 9 : 2  

O0 

(2n/(Ax) 2) ~ [•(O/Ax, ~)12 Ig(O)-gh(O)12dO (2.8) 
J - o o  

Using the L2-norm as a measure for the truncation error, Eq. (2.8) shows, that for minimum 
error one should minimize ]1 g -  gh]l, defined as 

I l g - g h l [  = = p(O/Ax)lg(O)-g (O)12dO, (2.9) 

where the weight function p should be equal to the square of the modulus of the Fourier- 
transform of the exact solution at time t. This defines the optimum way in which to diminish 
dissipation and dispersion. 

The above procedure is not of any practical use, because at every instant t = n A t the Fourier- 
transform of the exact solution must be determined, and the minimization process carried out. 
Obviously, it is much easier to obtain the solution analytically. However, it will be shown that 
interesting and useful results may be obtained with a fixed weight function, chosen a priori. 
Other applications of this idea are given in [10]. 

3. The choice of the weighting function 

The obvious way to improve the fidelity of a difference scheme, apart from decreasing the mesh- 
size of the computational grid, is to increase the order of consistency. It is of interest to inquire 
to what weight function this corresponds. For schemes of type (2.2), the highest possible 
order of consistency is, in general, k 2 -kx ,  or higher in exceptional cases. The relation between 
the order of consistency and the choice of the weight function p(v) for schemes of type (2.2) is 
given by the following theorem. 

Theorem. For stable difference schemes, a necessary condition for IIg--ghtl to be a minimum 
with weight function p(O / Ax)=-6(O/ Ax) is that the difference scheme has the highest possible 
order of consistency. 

Proof. Because g and gh consist of exponentials, g -  gh can be represented by a power series in 
0 which is uniformly convergent in an arbitrary finite domain [0] < O. Consider two difference 
schemes, with orders of consistency M and N, M < N, and let g -  gh be given by, respectively, 

(g--gh)M= ~ bm Ore, (g -gh )~=  ~ cmO m . (3.1) 
0 o 

By definition, bm= 0 for 0, 1, 2, ..., M, bM + 1 # 0, % = 0 for m = 0, 1, 2, ..., N, cN + 1 # 0. The 
following sequence of weighting functions is chosen : 

p,(O/ Ax) = (n/ Axn -~ ) exp [-(nO/Ax) 2 ] . (3.2) 

This sequence belongs to the class of sequences by means of which the delta-function may be 
defined. One may write : 

[[g-g,,]l g -  [[g--ghll 2 = Io+Ioo , (3.3) 
with 

Io = (n/Axn ~) exp ( -  (nO/Ax) 2 ) % - v m dO, (3.4) 
- 0  1 

and 
I~ = (n/Axn ~) + exp( - (nO/Ax)  )([g--ghl~--Ig--ghl~t) dO. 

. oc JO J 

(3.5) 
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22 P. Wesseling 

It will be shown that I o + I~ becomes negative for n large enough. One may write: 

The series 2 2~M + 3 dm 0 m is again uniformly convergent for 0 < O. One has 

f ~ 5 (n/Ax~ a) exp(-(nO/Ax) z) dmOrndO ~ 
- O  2M+3 

D f < 
j -  oo 

= 1.3" 5...  (2M+ 3)2 -M-2 (Ax/n)2~t+~D, (3.7) 

where D = ~+2ld2m]O 2"-2M-4. Furthermore, 

f ~ (n/Axrc a) exp(-(nO/Ax)2)[bM+l[202~l+2dO > 
- 0  

> 1 '3" 5 ... (2M+ 1)2 -M- ~ (Ax/n) 2M+z [1 -~--~ (Ax/nO) exp(-(nO/Ax)2)] ]bM+~ ]2 
(3.8) 

With the aid of (3.7) and (3.8) an upper bound for I o is obtained. An upper bound for I s can be 
derived as follows. Because stable difference schemes are considered, JghJ < 1 + K~ At, where 
K 1 is some positive constant. Furthermore, 10l = 1. Hence, I g -  ghl 2 - I g - ghl 2 < K2 rc~, where 
K 2 is some other constant. It follows that 

I~ < (2K2n/Ax) exp(-(nO/Ax)2)dO < (KzAx/nO) exp(-(nO/Ax) 2) (3.9) 
0 

for n large enough. By substitution of Eqs. (3.7), (3.8) and (3.9) in (3.3) one finds that 

Jig- g,,]l 2 -]lg-g,,]]  2 < 0 (3.10) 

for n large enough, which completes the proof. 
When Ax is so small that (o(O/Ax, ~) is appreciably different from zero only in a small 

neighbourhood of 0=0  one may conclude heuristically from the preceding theorem that 
difference schemes with maximum consistency will be optimal. However, in practice one 
wishes for reasons of efficiency to make calculations with as large a step-size as possible. For 
larger step-sizes, ~b (O/Ax, ~) will differ from zero in a relatively large neighbourhood of 0 = 0. 
Accordingly, [[g-9~,][ should be minimized with a weight function different from a delta- 
function. 

A discussion will be given of results obtained with the following weight functions: 
(i) Pl (v) = ~ (v). This weight function results in "classical" schemes with maximum consistency. 
(ii) P2 (v) = t / v  2. This weight function equals minus the square of the Fourier-transform of 

the step-function. Difference schemes for which 1] g-9hH is minimal wlth this weight function 
are optimal for the calculation over one time-step, with a step-function as initial condition. 
This weight function is less heavily concentrated around v=0  than the delta-function. 

(iii) P3 (v)--c~ (v -  ~/Ax). First or second order consistency is imposed as a constraint on the 
minimization of IlO-ghll for four- or five-point schemes, respectively, in order to ensure 
convergence as Ax--*O. Schemes obtained with this weight function give a better resolution of 
the shortest waves (with v =~z/Ax) that can be resolved by the difference scheme, than schemes 
with maximum consistency. 

(iv) P,+2 (v)=6(v-rc/nAx), n=  2, 3. As a constraint on the minimization process, O(n-1)  
consistency is imposed for (n + 2)-point difference schemes. The reason behind this choice of 
weight function is as follows. With a polynomial of degree (n - 1) as initial condition, schemes 
with consistency of order ( n -  1) give the solution with error zero. Through the function-values 
at the (n + 1) points from which the solution in a given point on the next time-level is calculated 
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Accurate difference schemes for hyperbolic partial differential equations 23 

one can always fit a function f(x) consisting of a linear combination of a polynomial of degree 
(n -1)  and a sine or cosine with wavelength nAx. It turns out that minimization with weight 
function p, results in difference schemes that propagate f(x) without error. With a "classical" 
difference scheme, with consistency O (n), polynomials of O (n) are propagated without error. 
Because the spectrum off(x) contains more short wavelength components than the polynomial 
of O (n) through the given points, one expects that with schemes designed to propagate f(x) 
without error a more accurate representation of short wavelengths is obtained, though less 
accurate than schemes obtained with P3 as weight function. 

In the next section, 3-, 4- and 5-point difference schemes, obtained by minimization of 
]] g-gh]] with the foregoing weight functions will be given, together with results of trial calcula- 
tions. 

4. Difference schemes and trial calculations 

Only schemes of the following form are considered" 
1 

= ak(l)j+ k �9 
k= - 2  

The difference schemes are of what will be called "characteristic interpolation" type. That is, 
when u is constant they reduce to 

~0~ +1 = q~(nAt, jAx -uA t ) ,  (4.2) 

and q~ (n A t, j A t -  u A t) is evaluated by interpolation between the points of the difference mole- 
cule at the n At time level. For all schemes obtained in this way, the Courant-Friedrichts-Lewy 
condition 

c < 1 (4.3) 

was found to be sufficient for stability. 
For the 4-point schemes (a_ = = 0) the requirement of first order consistency leads to the 

following relations" 
a _ l = ( l + c - a 0 ) / 2 ,  a 1 = ( 1 - c - a o ) / 2 .  (4.4) 

Minimization of 119-91,11 with Pl, P2, P3 and P4 as weight functions under the restrictions 
given by (4.4) leads to difference schemes 1 to 4, for which ao is given by: 

scheme 1: ao = (1 - c 2 ) ,  (4.5) 

scheme 2: ao = ( 1 -  Icl), (4.6) 

scheme 3 : ao = cos 2 7zc/2, (4.7) 

scheme 4:a0 = cos roe~2. (4.8) 

For the minimization with weight factor Pl use is made of the theorem given in section 3. 
According to this theorem, [Ig-g~,[[ is minimized by the scheme with the highest possible order 
of consistency. 

With u constant, schemes 1 and 2 are the well-known Lax-Wendroff [8] and Courant-  
Isaacson-Rees [4] schemes, respectively. It is interesting to note that with error-norm (2.8) 
the Courant-Isaacson-Rees scheme rather than the Eax-Wendroff scheme is the optimal 
4-point scheme for the propagation of a step-function over one time-step. 

For the 5-point difference schemes c will be assumed to be positive. The case with c negative 
may be treated by replacing c by ]cl in the following formulae and by interchanging al anda_  1, 
and a 2 and a_ 2. 

Requiring second order consistency, one finds : 

a _ z  ----- ( ao - -  1 q -c2 ) /3~  ] 

a_~ - a o + l + c ( 1 - c ) / 2 ,  l (4.9) 

a I ( -2ao+2-3c+c2) /6 .  
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24 P. Wesselin9 

With Pl, P2, P3 and P5 as weight functions, minimization of IIg--ghll under the restrictions 
imposed by (4.9) results in schemes 5 to 8, with a o given by, respectively, 

scheme 5 : ao = (1 - c / 2 -  c 2 + c3/2), (4.10) 

scheme 6: ao = 1 - ( 3 c + c 2 ) / 4 ,  (4.11) 

scheme 7 : a0 = (5 - 2c 2 + 3 cos 7cc)/8, (4.12) 

scheme 8 : a0 = ( -  2 + 9c - c 2 - 12 cos (2n/3 - ~c/3))/4. (4.13) 

By intuitive reasoning, Fromm [7] has constructed a 5-point difference scheme with reduced 
dispersion, which he calls a "zero average phase error difference scheme". The phase error is 
identical to what is called dispersion in the present paper. The expression "zero average phase 
error" refers qualitatively to the fact, that as a function of Courant number the phase-error has 
positive as well as negative values. For most difference schemes, the phase error is negative. 
Scheme 6 turns out to be identical to Fromm's scheme. Hence we have the following result: 

Fromm's "zero average phase error" difference scheme is optimal for the calculation over one 
time-step of the solution with a step-function as initial condition. The qualitative property of small 
dispersion corresponds to the fact that among all 5-point "characteristic-interpolation" difference 
schemes Fromm's scheme has the smallest possible value oJ]l g -  ghll if the weight function P2 is used. 

The 8 schemes defined above are an approximation of Eq. (4.2), and therefore also of 

0q) ~0 
0~- + U gx = 0 (4.14) 

instead of Eq. (2.1). Therefore, when u (x) is not constant the schemes just given must be modified. 
A simple modification may be derived as follows. Eq. (2.1) is equivalent to 

grp du 
(l +u2) -Os + e = o ,  

or 

du (4.15) ln0sCp _ ( l+u2)-~  d~ '  

where 3/~s denotes differentiation along the characteristic of Eq. (2.1). From Eq. (4.15) it 
follows, that 

(PY+l=cp(nAt, jAx-uAt)  exp At~x  + O((At)2), 

or 
+ = r e ( n a t  , j A x - u  At)  + O ( (At)Z) , (4.16) 

with F =  1 -  At (du/dx). Because the schemes derived above approximate Eq. (4.2), they may 
be made to approximate Eq. (4.16) simply by multiplying the coefficients ak by F. The quantities 
F and c are evaluated at x=jAx.  In the trial calculations to be described shortly du/dx was 
evaluated analytically. 

When u (x) is variable, with the coefficients ak multiplied by F schemes 1 to 8 are first order 
consistent in t, whereas the order of consistency in x is 1 for schemes 2, 3 and 4, 2 for schemes 
1, 6, 7 and 8, and 3 for scheme 5. For difference schemes with but one unknown it is a simple 
matter to increase the order of consistency in t and make it equal to that in x, and write the 
scheme in conservation form, see e.g. Refs. [1], [5], [6], [7]. With more than one unknown, 
increasing the order of consistency in t, especially beyond 2, usually involves much labour and 
results in complicated difference schemes. Nevertheless, schemes of higher order consistency in 
t are used in practice, because of the more favourable balance between accuracy and step-size 
that one may hope to obtain with these schemes. The Lax-Wendroff scheme is usually employed 
in its second-order form, conveniently written as a predictor-corrector scheme. A third order 
conservative predictor-corrector scheme for hyperbolic systems of conservation laws has been 
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Accurate difference schemes for hyperbolic partial differential equations 25 

constructed by R u s a n o v  [17]. The  same scheme has been derived by Burstein and Mirin [2].  
It  will be formula ted  in the next section. It cor responds  to minimiza t ion  with weight funct ion p l .  

Trial  calculat ions have been made  with the R u s a n o v - B u r s t e i n - M i r i n  (RBM) scheme, the 
L a x - W e n d r o f f  scheme in the predic tor -cor rec tor  form given in [15], p. 303, and schemes 2 to 8. 
The  damping  coefficient co in the R B M  scheme was assigned in two ways" co = 3 and e) = c 2 ( 4 -  
C2). For  these trial calculat ions u(x) was chosen as" 

u ( x ) =  (a + b cos 2 fiX)-1 (4.17) 

If  initially ~0 is periodic in x with per iod 1 the solut ion is periodic in t with per iod p = a + b/2. 
This p rope r ty  is used to evaluate the errors  in the numerical  solution. 

The  following test-cases were studied : 

c a s e l ' a = l ,  b = l ,  ~Oo(X ) = I t ( x - � 8 9  

case 2: a = 1,  b = 1 ,  ~o o(x) = sin 2 rex, 

case 3 : a = 1.05, b = 1.9, q~o (x) = H ( x -  �89 

case 4: a = 1.05, b = 1.9, ~o o (x) = sin 2 ~cx, 

where H(x) is the periodic step-function with wavelength 1. For  the test-cases listed above,  
table 1 gives for the var ious schemes the error  no rm e, defined as" 

= m Iq)(t, kAx)-qg~(t, kAx)l ,  (m = 1lAx). (4.18) 
k=O 

For  all calculations, At= Ax. 

TABLE 1 

Average error for test-cases 1 to 4 

n = number of  points in difference molecule. 

n Case 1, t = 1.5 Case 2, t = 1.5 

Ax, At - -  0.025 0.05 0.0625 0.025 0.05 0.0625 

Scheme 2 3 0.1851 0.2251 0.2843 0.0979 0.1666 0.1942 
Scheme 3 4 0.1951 0.2690 0.2992 0.1096 0.1851 0.2145 
Lax-Wendroff 4 0.1595 0.2425 0.2613 0.0268 0.0858 0.1179 
Scheme 4 4 0.1411 0.2179 0.2401 0.0336 0.0816 0.1097 
Scheme 5 5 0.0963 0.1624 0,1929 0.0055 0.0277 0.0446 
Scheme 6 5 0.0965 0.1626 0.1921 0.0057 0.0278 0.0443 
Scheme 7 5 0.0973 0.1651 0.1960 0.0059 0.0286 0.0456 
Scheme 8 5 0.0963 0.1624 ( I , 1 9 3 0  0.0055 0.0277 0.0446 
R B M ~ = 3  6 0.1248 0.2118 0.2331 0.0146 0.0577 0.0819 
R B M , ~ = c 2 ( 4 - c  2) 6 0.1019 0.1631 0.1972 0.0029 0.0225 0.0380 

Case 3, t = 2  Case 4, t = 2  

0.025 0.05 0.0625 0.025 0.05 0.0625 

Scheme 2 3 0.2333 0.2897 
Scheme 3 4 0.2191 0.2923 
Lax-Wendroff 4 0.2154 0.3022 
Scheme 4 4 0.1869 0.2716 
Scheme 5 5 0.1256 0.2038 
Scheme 6 5 0.1252 0.2029 
Scheme 7 5 0.1320 0.2111 
Scheme 8 5 0.1257 0.2040 
R B M ~ = 3  6 0.1820 0.2488 
R B M , ~ = c 2 ( 4 - c  2) 6 0.1411 0.2208 

0.3174 0.1780 0.2715 0.3112 
0.3267 0.1556 0.2440 0.2832 
0.3135 0.0906 0.1894 0.2532 
0.2892 0.0805 0.1843 0.2338 
0.2278 0.0254 0.0795 0.1123 
0.2257 0.0255 0.0778 0.1113 
0,2367 0.0298 0.0900 0.1235 
0.2282 0.0255 0.0799 0.1125 
0.2466 0.0609 0.1550 0.1851 
0,2618 0.0215 0.0875 0.1183 
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26 P. Wesseling 

Several interesting conclus ions  can be drawn from table 1. In the first place, amon g  the 4- 
point  schemes considered scheme 4 is clearly the most  accurate by a fair margin, except when  
the solut ion is smooth  and the mesh is fine. For the test-cases considered here it is s ignificantly 
more  accurate than the Lax-Wendrof f  scheme. In figure 1 dissipation and dispersion of  scheme 

c=0.8 
1 

\ 
\ X  

Ighl/Igl 

C=0.8 ~ ~.~ . ~ .  

C=0.5 

c =0,2 

arg gh/arg g ~ ' x ~  

0 = 0 -~ O 
Figure 1. Dispersion and dissipation; , Law-Wendroff . . . .  , scheme 4. 

Figure 2. Results for test-case 3. , exact solution ; - -  

Journal of Engineering Math., Vol. 7 (1973) 19-31 

7// f ~ ~  

/ 
i 

Lax-Wendroff; . . . .  , scheme 4. 



Accurate difference schemes for hyperbolic partial differential equations 27 

4 and the Lax-Wendroff scheme are compared. The figure shows that scheme 4 has more 
dissipation but less dispersion than the Lax-Wendroff scheme. In figure 2 the solutions for 
test-case 3 are displayed; the results are qualitatively similar to test-case 1. Oscillations similar 
to those that are typical for the Lax-Wendroff scheme when the solution is discontinuous are 
also displayed by scheme 4, but with a smaller amplitude, as is to be expected from the fact that 
scheme 4 has more dissipation. A variety of stratagems, all embodying the introduction of 
additional dissipation, have been proposed in the literature for the removal of the oscillations 
exhibited by the Lax-Weddroff scheme. But in regions where the solution is smooth this 
additional dissipation usually causes the difference scheme to be less accurate then the original 
Lax-Wendroff scheme. Scheme 4, however, seems to be more accurate than the Lax-Wendroff 
scheme for smooth solutions also, as may be seen from the results of test-cases 2 and 4. This is 
probably due to the fact that the adverse effect of the extra dissipation of scheme 4 is compen- 
sated by the better dispersion properties. Figure 3 gives the solutions for test-case 4; the results 
are similar to those of test-case 2. 

F i g u r e  3. Resu l t s  for  tes t -case  4. - -  

1 

-, exac t  s o l u t i o n ;  - - - - ,  L a x - W e n d r o f f ;  . . . . .  , s cheme  4. 

The model-equation (2.1) with initial condition as in test-cases 1 and 3 gives an accurate 
representation of the development of a contact-discontinuity in gasdynamics. However, 
equation (2.1) does not contain the non-linear "steepening" behaviour of the advection-operator 
in fluid mechanics, and therefore the trial calculations reported in this paper do not accurately 
simulate the development of a shock-wave. An investigation whether, in the case of the true 
gasdynamical equations, scheme 4 is more accurate than the Lax-Wendroff scheme, not only 
for contact-discontinuities but also for shock-waves, would be of interest. 

Obviously, because of the appearance of a trigonometric function, scheme 4 requires more 
computer-time than the Lax-Wendroff scheme. However, it seems likely that the cosine could 
be replaced by a low-order polynomial without appreciable changes in the results. Further- 
more, the fact that scheme 4 consists of a predictor only and does not contain a corrector, is 
time-saving. 

As is to be expected, the results of the 5-point schemes are more accurate than the results of 
the 4-point schemes. The differences in accuracy between the 5-point schemes are small. 
Increasing the order of consistency in t gave only a slight improvement of the results. The agree- 
ment between the results of these schemes corresponds to the fact, that their amplification 
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c = 0 , 8  
1 - 1 
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factors do not differ much, as shown in figure 4. The results of scheme 7 are slightly worse than 
the results of the other 5-point schemes, and the results of scheme 3 are worse than the results 
of the other 4-point schemes. Apparently, the weight function Pa overemphasizes large wave- 
numbers at the expense of small wave-numbers. 

The accuracy of the RBM-scheme is seen to depend strongly on the damping coefficient to 
especially when the solution is smooth. It seems that this fact has not yet received sufficient 
attention. In calculations reported in [2] and [17] more or less arbitrary choices for co are made. 
Furthermore, in the case with more than one unknown it can be shown that regardless of the 
value of co the accuracy will always be appreciably less than what can be obtained in the scalar 
case with a proper choice of co. However, this deficiency can be remedied by a simple modifi- 
cation of the RBM scheme. It seems worthwhile to devote a special section to this matter, in 
view of the practical importance of the RBM scheme: it is the only predictor-corrector scheme 
in existence with higher order of accuracy than the Lax-Wendroff scheme. 

In the next section it will be argued, that the 15est choice for o) is co = c 2 (4 -  c2). Table 1 shows, 
that with this choice of m the RBM scheme is only slightly more accurate than the 5-point 
schemes. With r = 3 the accuracy is significantly worse. With Ax = 0.05 the results of the 5-point 
schemes are appreciably better than the results of the RBM scheme with the slightly larger 
step-size Ax = 0.0625. This suggests that the most economical way to increase the accuracy may 
be not to use the RBM scheme, but to develop a predictor-corrector form of one of the 5-point 
schemes, and use this with slightly diminished step-size. 

5. Modif icat ion of  the Rusanov-Burste in-Mir in-scheme 

The RBM scheme ([2], [17] ) is an approximation to hyperbolic systems of the following type: 

r162 af((o, x, t) 
& - Ox + 9((~ x, t) ,  (5.1) 

where (O, f and g are vectors. For simplicity, g will be assumed to be zero. The hyperbolicity 
implies that the eigenvalues of the matrix F=Of/g(O are real and distinct. 

The fraction zl At of the time-step At at which the first predictor is evaluated is an arbitrary 
parameter in the RBM scheme. However, the amplification factor is found not to depend on "ca, 
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so that the choice of this parameter is irrelevant in the present context, and has very little 
influence on the accuracy. In [2] and [17] calculations are made with % =�89 With this choice 
the RBM scheme is defined as follows: 

(1) 1 (Dj+:  = (q) ;+ 1 Jr- ( # ; ) / 2 + o ' ( f j n +  1 --fin)~3, (5 .2)  

qo} 2) = (p~ + 2a (fi(+~ - f iO~)/3,  (5.3) 

(p]+l = (p]+a(_2fj~+2+7fj,+l--7fjL~ + 2fj"_ 2)/24 + 3cr(fJ2~ --f~)1)/8 - ~  84(P ' 
24 J '  

(5.4) 

where a = A t/Ax, and 34 ~o" denotes an undivided fourth difference. The difference scheme is of 
third order accuracy in x and t. Equations (5.2) to (5.4) may be termed the first predictor, second 
predictor and corrector, respectively. The advantage of the predictor-corrector formulation is, 
that the matrix F and its time-derivatives do not enter, thus eliminating several matrix multipli- 
cations, which are very time-consuming. The term multiplied by co in (5.4) is called the damping 
term; it is necessary to stabilize the scheme. Stability requires ([2], [17]): 

2 2 cm(4-cm) < 3,  (5.5) 
where % = a2~, 2,, the absolutely largest eigenvalue of F. 

In order to investigate how the damping coefficient co should be chosen, the dissipation and 
dispersion properties of the RBM scheme are studied. To this end the linearizing assumption 
that F is constant is made. There exists a matrix U with the property UFU -1 =A, with A a 
diagonal matrix. The RBM scheme can be written in the following form: 

~t; +1 ~__ ~t;+ C ( -  ~ty+ 2 + 8~/t;+, - 8l//y_ 1 Jr 0y_2)/12 Jr 

2 n n + C  ( 0 j + 2 - 2 0 ] +  Oj_2)/S 

n n n (2) 
Jr C 3 (~/; + 2 - -  2~j +~ + 2~_~  - Oj_ 2 )/12 - 24 6~ ~ ; '  (5.6) 

where ~/= U(p and C = aA. 
First the case with only unknown (with C =  c) is considered. Figure 5 gives the dissipation 
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Figure 5. Dispersion and dissipation of the Rusanov-Burstein-Mirin scheme. 
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and dispersion properties of (5.6) for several values of c with co= 3 and co= c 2 (4-c2),  the two 
extremes of the stability condition (5.5). From this figure the reason why the accuracy with 
co = 3 is so much less than with co = c 2 ( 4 -  c 2) (see table 1) is immediately apparent. With co = 3 
the damping for moderate wavenumbers is more, for large wavenumbers less than for co= 
c 2 (4-c2). In view of the fact that the dispersion increases as the wavenumber increases, this is 
undesirable; wavenumbers with much dispersion should be damped out more quickly than 
wavenumbers with little dispersion. For co = 3 this is not the case; for 0 = re, where the dispersion 
is greatest, damping is even completely absent. 

Hence it is clear why the choice of co has such a large influence on the accuracy. The question 
arises, whether there is a better choice for co than c2(4"c2). This does not appear to be so. 
Assigning co = c 2 ( 4 - c  2) is found to correspond to minimization of (2.9) with a delta-function 
at zero wavenumber as weighting function (finding out to what weighting function co = 3 
corresponds does not seem to be easy). Spreading of the weighting function to non-zero wave- 
numbers may be expected to have roughly the same influence on a third order 6-point scheme, 
such as the RBM-scheme, as on the second and third order 5-point schemes discussed in the 
preceding section. Here it was found that spreading of the weighting-function does not have 
much influence on the dissipation and dispersion (figure 4), unless high wavenumbers are 
emphasized very strongly, in which case the scheme becomes inaccurate, see for example the 
results obtained with scheme 7 (table i). Furthermore, with co = c2(4" c2), the RBM scheme is 
fourth order accurate in x, although still third order in t. 

The case with an arbitrary number of unknowns will now be considered. It is clear that giving 
2 (4-c~)  results in good dissipation and dispersion properties for one component co the value c m 

of (5.6) only, namely the one corresponding to the largest element % of the diagonal-matrix C. 
The accuracy of the other components of (5.6) may be as bad as the accuracy of the scalar case 
with co = 3. Fortunately, there is a remedy which leaves the conservative predictor-corrector 
form of the RBM-scheme untouched: replace the scalar co by the matrix s 2 ( 4 E - A  2), 
with E the identity matrix. This results in optimal damping of each component of (5.6). Eq. (5.4) 
becomes : 

q~+a = qg,~+~(_2L..+2+Vfj,~_l_7fj, x+2fj,  z)/24 + 

+ 3t7 (f)2) i - f)_2)a)/8-~464d~, d = U - i  f2Ucp. (5.7) 

The matrix multiplications necessary for finding d can usually be done analytically beforehand. 
For this the eigenvalues and the diagonalizing matrix U are needed. These may be considered 
known, because in practical application they are needed for a good understanding of the 
phenomenon under study. Replacement of (5.4) by (5.7) makes the RBM scheme slightly more 
time-consuming, because in addition to the function evaluations needed to determine f " , f  (~) 
and f(2) an additional function evaluation to determine d is necessary. 

The effectiveness of replacing (5.4) by (5.7) is demonstrated by means of the following model 
problem, which is a version with two unknowns of the model problem discussed in the previous 
section : 

aq~/Ot + ~F/Ox = 0 

where 

qo= , F = A q o ,  
(o2 

(5,8) 

Cl C2"~ = ( ~ . 1 +  .~.2)/2 a ~ , c1, 2 __ , 
c2 c l /  

21,2 = (al,2 + bl,2 cos 2 rex)-1, al,2 and bl, 2 are arbitrary constants. If ~o is initially periodic in x 
with period 1 and if a 1 +�89 =p/k,  a2 +)b2 =p with k an arbitrary integer, the solution is 
periodic in t with period p. The four cases that were calculated are listed in table 2. 

The average error in ~o 1 and ~o2, called el and e2, respectively, is defined as in Eq. (4.15) and 
listed in table 3. The results confirm, that with the corrector given by (5.7) the scheme is con- 
siderably more accurate than with the corrector given by (5.4), especially when the solution is 
smooth. 
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TABLE 2 

Definition of test-cases 5 to 8 

qh (0, x) q~2 (0, x) al bl az b2 

Case 5 H(x- �89 cosE~(x -1 )  1.05 0.9 2.5 1 
Case 6 sin2 rex cosZTr(x-�88 1.05 0.9 2.5 1 
Case 7 H(x-�89 cos2z~(x-�88 1.4 0.2 2.8 0.4 
Case 8 sin2~zx cosZ~r(x -1 )  1.4 0.2 2.8 0.4 

TABLE 3 

Average error for test-cases 5 to 8 

Dampin9 Case 5, t = 3 Case 6, t = 3 Case 7, t = 3 Case 8, t = 3 
term 

dx, At 0.025 0 . 0 6 2 5  0 . 0 2 5  0 . 0 6 2 5  0 . 0 2 5  0 . 0 6 2 5  0.025 0.0625 

Eq. (5.4) el 0.1056 0 .2241 0 .0023  0 .0383  0 .0913  0 .1868  0.00095 0.0118 
e2 0.0268 0 .0405  0 .0038  0 .0428  0 .0322  0.0390 0.00107 0.0155 

Eq. (5.7) ~1 0.1032 0 .2157  0.0025 0.0394 0.0610 0.1866 0 .000092 0.0036 
e2 0.0314 0 .0663 0 .0022  0 .0288  0 .0150  0 .0303  0.000081 0.0027 
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